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Abstract In vitro cell and tissue-based systems have

tremendous potential in fundamental research and for

commercial applications such as clonal propagation,

genetic engineering and production of valuable metabo-

lites. Since the invention of plant cell and tissue culture

techniques more than half a century ago, scientists have

been trying to understand the morphological, physiologi-

cal, biochemical and molecular changes associated with

tissue culture responses. Establishment of de novo devel-

opmental cell fate in vitro is governed by factors such as

genetic make-up, stress and plant growth regulators.

In vitro culture is believed to destabilize the genetic and

epigenetic program of intact plant tissue and can lead to

chromosomal and DNA sequence variations, methylation

changes, transposon activation, and generation of somacl-

onal variants. In this review, we discuss the current status

of understanding the genomic and epigenomic changes that

take place under in vitro conditions. It is hoped that a

precise and comprehensive knowledge of the molecular

basis of these variations and acquisition of developmental

cell fate would help to devise strategies to improve the

totipotency and embryogenic capability in recalcitrant

species and genotypes, and to address bottlenecks associ-

ated with clonal propagation.

Keywords Adventitious meristem � Callus �
Dedifferentiation � Epigenetic changes � Gene expression �
Genetic changes � Plant growth regulators � Regulation �
Somaclonal variation � Somatic embryogenesis � Tissue

culture � Totipotency � Transposons

Introduction

Plant cells are unique in that they retain totipotency and

developmental plasticity in the differentiated state and have

the ability to dedifferentiate, proliferate, and subsequently

regenerate into mature plants under appropriate culture

conditions in a hormone-dependent manner (Skoog and

Miller 1957; Steward et al. 1964). As a consequence, plants

can initiate cell proliferation and development from diverse

tissues in response to hormonal stimuli. The ability of cul-

tured explant tissue to reset its genetic and epigenetic pro-

gram in order to endure the artificial hormonal environment

will ultimately determine its fitness and adaptability to in

vitro cultures. As a consequence to these dynamic processes

orchestrated at the molecular level, off-types or variants are

often identified among these clonally propagated progenies.

The term ‘somaclonal variation’ refers to tissue culture-

induced stable genetic, epigenetic or phenotypic variation

in clonally propagated plant populations (Larkin and

Scowcroft 1981, 1983). This is considered a major problem

in commercial micropropagation wherein the regenerant

population is expected to be homogenous. However, these

somaclonal variations generated in vitro have been effi-

ciently exploited in developing new varieties with superior

agronomic traits in diverse species (Jain 2001).

Plant stem cells naturally present in the root and shoot

apex of intact plants are considered ‘pluripotent’, since

they are able to form cell and tissue types present in either
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root or shoot tissue. In contrast, the term ‘totipotent’ is

applied to somatic cells cultured in vitro to produce

embryogenic cells, which give rise to somatic embryos and

regenerated whole plants (reviewed in Verdeil et al. 2007).

Factors influencing in vitro adaptability and regeneration

are varied, ranging from genotype, origin of explant, cul-

ture conditions, and hormonal effects. Establishment of

stable, efficient in vitro regeneration systems in economi-

cally important crops is a prerequisite for biotechnology

and molecular breeding applications. Furthermore, plant

cell cultures have evolved as in vitro experimental models

for studying cell division, differentiation and morphogen-

esis, which are important in key developmental processes

such as meristem formation and embryogenesis (Zimmer-

man 1993) and stress-related genome plasticity in plants

(Madlung and Comai 2004).

The availability of genome sequence information and

mutant/tagged collections in select plant species, extensive

exploitation of novel genomic tools, use of precise devel-

opmental, stage-specific molecular markers, advances in

live imaging and microscopy (including laser capture

micro-dissection) and application of spectroscopic tech-

niques such as laser-induced fluorescence (LIF) have

enabled researchers to accurately monitor the develop-

mental changes that take place in plant cell culture. These

high-throughput approaches provide an array of candidate

genes whose function can subsequently be verified by

reverse genetics strategies. The identification of key genes

involved in in vitro adaptation and development is

immensely helpful in developing strategies to enhance

regeneration and morphogenesis in heterologous, recalci-

trant species.

In this review, we discuss the current understanding of

genomic and epigenomic changes that take place under in

vitro conditions. These changes are believed to facilitate

explant adaptation to culture conditions and to aid in sub-

sequent morphogenesis processes. Understanding the

molecular basis of these changes and acquisition of devel-

opmental cell fate will enable researchers to undertake

informed hypothesis-driven strategies aimed at producing

true-to-type plants in clonal propagation and to improve the

totipotency and embryogenic capability of recalcitrant

species. Alternatively, regulatory circuits could be modified

to expand the repertoire of somaclonal variations for crop

improvement and reverse genetic approaches.

Molecular changes during in vitro culture

Figure 1 outlines the scheme of plant cells in culture and

highlights factors affecting genome stress and molecular

regulation of developmental events in vitro. Explant tissue

is excised from the intact plant after dissecting that

involves wounding, and is incubated under aseptic, artifi-

cial conditions with an exogenous nutrient source provided

by the media on which the tissue is cultured (Skoog and

Miller 1957). Typically, the explant undergoes direct

organogenesis or somatic embryogenesis. In the indirect

method of regeneration, the explant passes through a

‘callus phase’ wherein it undergoes dedifferentiation and

loss of photosynthetic ability, thereby necessitating the

addition of a carbon source, such as sucrose, in the med-

ium. In some cases like protoplast culture, chemical/

mechanical treatment is required to eliminate plant cell

walls thereby contributing to additional stress. Other

physical factors such as the reduction–oxidation (redox)

environment, temperature, light quality, photoperiod and

presence of specific hormones all influence the ability of

the tissue to adjust to these conditions and initiate devel-

opmental transitions for survival.

These dynamic changes are facilitated by reprogram-

ming of cellular physiology, metabolism changes, revival

of cell division, dedifferentiation, redifferentiation, mor-

phogenesis, etc., all of which are initiated by profound

molecular changes. A remodeling of gene expression

reflected at the steady state RNA and protein levels cor-

responding to specific developmental programs has also

been documented using subtractive hybridization, gene

chip and whole genome microarrays and proteomics

approaches (Yin et al. 2007). These proteins belong to

diverse families such as receptor kinases, transcription

factors, structural proteins and enzymes, and are implicated

in cell differentiation and morphogenesis.

In vitro environment is associated with permanent

genetic changes such as chromosomal ploidy level, chro-

mosome breakage and rearrangement, base substitution in

DNA sequence, and activation and mobility of transposable

elements to other genomic locations (Phillips et al. 1994).

Epigenetic deregulation, reflected primarily as alteration in

methylation levels, also reportedly occur in the in vitro

cultured tissues (Kaeppler et al. 2000). Recent insights into

epigenetic reprogramming of the genome in terms of var-

iation in chromatin modification and small RNA-mediated

regulation are beginning to open up new vistas and provide

new tools for desirably manipulating the in vitro response

of diverse species and cultivars.

Gene expression regulation of developmental cell fate

in vitro

Plant cells in culture have the unique potential to alter their

developmental program in order to adapt to culture con-

ditions. This plasticity is influenced by multiple factors

including the genetic makeup of the plant and environ-

mental factors, such as hormones and nutrient molecules.

The molecular regulatory mechanisms underpinning
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hormonal crosstalks affecting in vitro adventitious shoot

regeneration have been recently reviewed (Duclercq et al.

2011). The use of developmental markers associated with

in vivo shoot and root apical meristem formation, hormone

synthesis, transport and signaling has also been instru-

mental in precisely monitoring and dissecting these in vitro

developmental events (Atta et al. 2009). Molecular control

of developmental switches is orchestrated by profound, but

transient changes in gene expression (reflected in RNA and

protein levels) involved in hormone synthesis, signaling

and response, and transcriptional regulators affecting

development.

Several strategies including QTL analysis (Taguchi-

Shiobara et al. 2006; Bolibok et al. 2007; Krakowsky et al.

2006; Song et al. 2010), biochemical studies (Tang and

Newton 2005), global expression profiling (Che et al.

2006a, b) and candidate gene analysis (Gong et al. 2005)

have been used to study molecular mechanisms underlying

in vitro responses such as callus initiation, production of

somatic embryos, and organogenesis in different species.

Quantitative proteomics techniques such as stable isotope

labeling by amino acids in cell culture (SILAC) have been

refined to suit plant systems and exploited recently in

Arabidopsis suspension cell culture systems to analyze

relative protein expression levels (Gruhler et al. 2005;

Schütz et al. 2011). High-throughput transcriptomic (Singla

et al. 2007; Bao et al. 2009) and proteomic techniques (Yin

et al. 2007; Marsoni et al. 2008), state-of-the-art protein

analysis techniques such as liquid chromatography mass

spectrometry (LC–MS) (Jung et al. 2008) and multidi-

mensional protein identification technology (MudPIT)

(Chen et al. 2009b; Cho et al. 2009) are extremely powerful

tools to simultaneously identify and monitor a large num-

ber of RNA/protein and their expression changes in vitro.

Some of the techniques used for analyzing the variations

generated under in vitro culture conditions are summarized

in Table 1.

Protein kinases

Protein kinases are enzymes that catalyze the transfer of

phosphate groups from a nucleoside triphosphate to amino

acids such as serine and threonine, or histidine residues

present in plant proteins thereby modulating the properties,

• DNA methylation: 
MET1,DRM2

• Chromatin remodeling:  
PICKLE, KYP

• Small RNA mediated 
regulation

Epigenetic changes

• Chromosomal level 
changes

• DNA sequence changes
• Transposition and 

amplification

Genetic changes

•Somaclonal 
variation

Hormones
• Auxins

• Cytokinins
• ABA

• Gibberellins
• Ethylene 

Explant and culture systems
• Protoplast

• Cell suspension
• Callus

• Root cultures
• Shoot tip and meristem

• Embryo
• Microspore

• Nutrients and other chemicals
• Wounding
• Enzyme action
• Disturbed circadian rhythm
• Physical factors
• Redox environment
• Photo periods

Stresses

Gene expression regulation

• Protein Kinases: 
SERK, HK

• TF genes: WIND1, WUS
• Structural genes:

Actin, Globulin 

In vitro 
environment

Molecular 
changes

Acquisition of 
cell fates

• Dedifferentiation
• Proliferation

•Somatic embryogenesis
• Organogenesis

Developmental program

Fig. 1 In vitro culture and molecular changes caused in the process.

Cultured plant cells are believed to generate genomic stress resulting

from wounding, physical–chemical factors, presence of hormones

and/or enzymes, coupled with the developmental events of dediffer-

entiation and regeneration. These changes are manifested at the gene

expression level in protein kinases, transcription factors (TF) and

structural genes and contribute to explant adaptation to stress and

reorientation of its developmental program. In vitro culture is also

associated with genetic changes including chromosomal changes,

DNA sequence alterations, amplifications and transpositions. More

recent discoveries point to epigenetic changes at the level of DNA

methylation, chromatin modification and small RNA-mediated reg-

ulation taking place in cultured tissues. The spectrum of genetic and

epigenetic changes can potentially give rise to phenotypic changes

among the regenerants that are termed somaclonal variations
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localization and functionality of the interacting partners.

Cyclin-dependent protein kinases belong to the serine/

threonine kinase family and are key players in the molec-

ular regulation of cell cycle and cell division in eukaryotes.

The R2 gene of rice encodes a cyclin-dependent protein

kinase. When over-expressed in tobacco, the gene was able

to confer cell division and callus formation properties,

instead of root organogenesis in an auxin-rich medium,

Table 1 Techniques used for detecting cell culture-induced genomic changes

No. Type of variation Technique Example reference(s)

1 Chromosome level changes Flow cytometry Leal et al. (2006)

Fluorescent in situ hybridization (FISH) Gernand et al. (2007)

2 DNA sequence changes Restriction fragment length polymorphism (RFLP) Andreev et al. (2005)

Inter-simple sequence repeats markers (ISSR) Sreedhar et al. (2007)

Random amplified polymorphic DNA (RAPD) Jin et al. (2008)

Microsatellites or simple sequence repeat (SSR) Jin et al. (2008)

Polymerase chain reaction–restriction fragment

length polymorphism (PCR–RFLP)

Kour et al. (2009)

Amplified fragment length polymorphism (AFLP) Li et al. (2007)

Next generation sequencing of genomic DNA libraries Jiang et al. (2011)

3 DNA sequence-specific changes Inter-retrotransposon amplified polymorphism (IRAP) Smýkal et al. (2007)

Sequence-specific amplification polymorphism (SSAP) Kour et al. (2009)

Transposon display Ngezahayo et al. (2009)

4 RNA expression changes Differential display Linkiewicz et al. (2004)

Suppression subtractive hybridization Zeng et al. (2006)

EST array or Gene Chip hybridization Che et al. (2006a, b)

cDNA macroarray hybridization Singla et al. (2007)

Genome-scale microarray hybridization Bao et al. (2009)

5 Protein expression changes Sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE)

Krsnik-Rasol (1991)

Two-dimensional gel electrophoresis (2-DGE) Yin et al. (2007)

Stable isotope labeling of amino acids in cell

culture (SILAC)

Schütz et al. (2011)

6 Isozyme pattern changes Starch gel electrophoresis and staining Mangolin et al. (1994)

7 Metabolite changes Nuclear magnetic resonance spectroscopy (NMR) Palama et al. (2010)

8 DNA methylation changes Methylation-sensitive Restriction fragment length

polymorphism (metRFLP)

Kaeppler and Phillips

(1993a, b) and Jaligot

et al. 2002

Methylation-sensitive restriction fragment

length polymorphism (metRFLP)

Bednarek et al. (2007)

Methylation-sensitive amplification polymorphism (MSAP) Kour et al. (2009)

Based on treatment with the restriction enzyme McrBC, which

only cleaves DNA at 5-methylcytosine

Tanurdzic et al. (2008)

DNA degradation followed by reversed-phase high-performance

liquid chromatography (RP-HPLC)

Kubis et al. (2003)

DNA degradation followed by high performance capillary

electrophoresis (HPCE)

Berdasco et al. (2008)

Based on bisulfite treatment, which changes un-methylated

cytosines into uracil, and sequencing

Ngezahayo et al. (2009)

Transposon methylation display (TMD) Ngezahayo et al. (2009)

9 Chromatin condensation Fluorescent in situ hybridization (FISH) Koukalova et al. (2005)

10 Chromatin modification Chromatin IMMUNOPRECIPITATION (ChIP) analysis Grafi et al. (2007)

11 Small RNA expression changes Cloning and northern analysis Luo et al. (2006)

Cloning and qRT-PCR Wu et al. (2011)

MicroRNA array hybridization Zhang et al. (2010b)

Cloning and deep sequencing of small RNA libraries Tanurdzic et al. (2008)
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pointing to a role of this class of protein kinase in regu-

lating the acquisition of cell fate (Yamaguchi et al. 2003).

Members of the Sucrose non-fermenting 1 (SNF1)-related

serine/threonine kinase (SnRK) family, for example,

Medicago truncatula Stress kinase 1 (MtSK1), have been

reported to be important for stress-induced somatic embryo

formation (Nolan et al. 2006).

Receptor protein kinases are generally transmembrane

protein kinases with an extracellular receptor-like ligand

binding domain and an intracellular kinase domain. They

play a prominent role in cellular signal transduction path-

ways in prokaryotes and eukaryotes. A signal transduction

cascade is initiated by the binding of a specific ligand or

signal followed by transduction of the signal inside the cell

resulting in the altered transcription of an array of genes

involved in development, stress or hormone response.

Somatic embryogenesis receptor kinase (SERK), a leucine-

rich repeat receptor-like kinase (LRR-RLK), identified in

cultured carrot cells was the first receptor-like kinase

suggested to play a major role in somatic embryo induction

(Schmidt et al. 1997). Homologues of the SERK1 gene also

reportedly play equivalent roles in cultured cells of Ara-

bidopsis (Hecht et al. 2001), sunflower (Thomas et al.

2004), rice (Hu et al. 2005), wheat (Singla et al. 2008),

grapes (Schellenbaum et al. 2008a) and coconut (Pérez-

Núñez et al. 2009). An exception to these reports is the

identification of two maize homologues (ZmSERK1 and 2)

that were found to be expressed in both embryogenic and

non-embryogenic tissues (Baudino et al. 2001).

Another LRR-receptor-like kinase, Clavata 1 (CLV1),

mediates signaling that restricts the size of the shoot mer-

istem by negatively regulating the WUS transcription fac-

tor (Cary et al. 2002; Miwa et al. 2009). Ectopic over-

expression of rapeseed CLV1 gene in Arabidopsis led to a

drastic reduction in somatic embryo production (Elhiti

et al. 2010), thereby pointing to its negative regulatory

effect in this process.

Proteins belonging to the histidine kinase family act as

hormone receptors in plants. Cytokinin hormone signaling

is mediated by a two component system that comprises

histidine kinases involved in signal perception and

response regulators that transduce the signal to downstream

effectors. Arabidopsis histidine kinases 1, 2 and 3 (AHK1,

AHK2 and AHK3), and cytokinin response 1 (CRE1/

AHK4) form a family of transmembrane receptors that are

involved in sensing and initiation of the cytokinin signaling

cascade (Inoue et al. 2001; Higuchi et al. 2004; Romanov

et al. 2006). Hormone habituation is a phenomenon by

which plant cells and tissues lose the requirement of

exogenous hormones to sustain cell division and develop-

ment upon continuous culture (Meins 1989). The CRE1

receptor expression was upregulated in Arabidopsis cul-

tures habituated for cytokinin indicating an important role

of hormone perception and signaling in this phenomenon

(Pischke et al. 2006).

The receptor kinase activation is the starting point of the

signaling cascade mediating developmental switches/hor-

mone responses; it represents an important regulatory

control point. However, the downstream signaling com-

ponents and transcription factors modulate the ultimate

response features of the species or explant of interest.

Transcription factors

Transcription factors are regulatory proteins that are able to

induce or repress the transcription of genes owing to their

ability to bind to specific DNA sequences thereby regu-

lating target gene expression. They are essential mediators

of developmental transitions and cellular stress responses

(Liu et al. 1999). Many genes that have established roles in

regulating embryogenesis and meristem induction and

development in vivo have also been found to regulate

somatic embryo formation and organogenesis in vitro.

Transcription factors of the Apetala2/Ethylene Response

Factor (AP2/ERF) family like Bolita (BOL) (Marsch-

Martinez et al. 2006), and wound-induced dedifferentiation

1 (WIND1) (Iwase et al. 2011) have been found to trigger

cell dedifferentiation and proliferation leading to callus

formation. Babyboom (BBM) (Boutilier et al. 2002) and

Embryomaker (EMK) (Tsuwamoto et al. 2010), belonging

to the same family, have established roles in somatic

embryo induction and development. The BBM protein is

reported to trigger cell proliferation by interacting with

downstream target genes, including actin depolymerising

factor (ADF9), which is important for actin reorganization

affecting developmental switches (Passarinho et al. 2008).

Enhancer of regeneration (ESR) 1 and 2 (Banno et al.

2001; Ikeda et al. 2006) are other members of this gene

family that have been found to positively affect shoot

organogenesis in Arabidopsis. The role of ethylene in

somatic embryo development was demonstrated in Medi-

cago protoplast cultures, where Somatic Embryo-Related

Factor1 (MtSERF1), an ethylene responsive ERF subfam-

ily transcription factor, was shown to be crucial for embryo

induction and is therefore implicated in stress and devel-

opmental crosstalk (Mantiri et al. 2008).

Wuschel, a related protein Wuschel homeobox (WOX)

(Palovaara and Hakman 2008; Park et al. 2010; Gambino

et al. 2011), MADS domain containing protein Agamous-

like15 (AGL15) (Harding et al. 2003), Leafy Cotyledon 1

(LEC1) (Zhang et al. 2002), Leafy Cotyledon 2 (LEC2)

(Ledwoń and Gaj 2009), Fusca3 (FUS3), ABA Insensitive

3 (ABI3)/Viviparous1 (VP1) (Su et al. 2009), Leafy Cot-

yledon 1 like (LIL) (Alemanno et al. 2008; Schellenbaum

et al. 2008a; Chiappetta et al. 2009) are some of the tran-

scription factors believed to play a crucial role in somatic
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embryogenesis. Mutants of the Leafy Cotyledon genes

(LEC1, LEC2 and FUS3) displayed drastically reduced

somatic embryo production in vitro, thereby proving their

key role in in vitro embryogenic response, despite a normal

auxin gradient (Gaj et al. 2005). Another homeobox protein,

Shootmeristemless (STM) (Elhiti et al. 2010), NAC family

transcription factors like Cup shaped cotyledon 1 (CUC1)

(Takada et al. 2001) and (CUC2) (Daimon et al. 2003;

Motte et al. 2011) were found to be important for stem cell

establishment and shoot formation in Arabidopsis.

The effect of auxin on meristem specification in somatic

embryos was examined in Arabidopsis using molecular

markers for auxin efflux protein Pinformed (PIN) and auxin

responsive reporter, DR5::GUS. Expression of the auxin

transporter PIN4 gene was found to co-localize with the

site for root initiation (root pole) in an auxin responsive

manner, as evidenced by DR5::GUS expression (Bassuner

et al. 2007). Localized expression of the homeobox tran-

scription factor Wuschel (WUS) (Zuo et al. 2002) is con-

sidered a reliable marker for acquisition of competence for

shoot regeneration in Arabidopsis (Che et al. 2007) and

Medicago (Chen et al. 2009a). In these studies, the exact

concentration of exogenous auxin supply was essential for

inducing somatic embryogenesis. This is necessary for

efficient polar localization of auxin mediated by PIN1

proteins, and establishment of an auxin gradient, which

were prerequisites for the correct expression of WUS gene

required for shoot apical meristem specification (Su et al.

2009).

Activation of transcription factors may imply the acti-

vation of their target genes. Hence, identifying master

regulators of key processes and analyzing the underlying

interactions and regulatory network (Zheng et al. 2009)

may help us to understand and predict in vitro develop-

mental phenomena.

Structural proteins and enzymes

Biochemical, transcript and protein profiling studies have

identified a large number of genes coding for proteins

potentially involved in developmental events. These pro-

teins belong to diverse metabolic pathways and play a

pivotal role in cellular reprogramming in response to stress

and hormonal cues in vitro.

Biochemical activity of cell wall enzymes such as b-1,3-

glucanases in chicory (Helleboid et al. 1998; 2000), cell

wall and membrane associated proteoglycan proteins such

as glucosamine- and acetylated glucosamine-containing

arabinogalactan proteins in carrot (van Hengel et al. 2001),

abscisic acid (ABA) inducible expression of embryo-spe-

cific globulin protein in maize (Duncan et al. 2003), and

germin-like proteins in conifer cultures (Mathieu et al.

2006) are found to be associated with somatic embryo

induction. Recently, a mutant Arabidopsis was identified

with an inability to regenerate shoots in in vitro culture,

attributed to a defect in fasciclin-like arabinogalactan

protein expression (Johnson et al. 2011).

The activity of mevalonate kinase, an enzyme involved

in isoprenoid biosynthesis, has been reported to be a bio-

chemical marker for root induction of white pine shoots

(Tang and Newton 2005). Likewise, the expression of

glutathione-S-transferase (GST), which is crucial for pro-

tecting cellular machinery from oxidative damage, was

correlated with shoot regeneration in mustard (Gong et al.

2005). Interestingly, AUX 1, an auxin influx facilitating

membrane protein, was also found to be involved in

cytokinin-mediated stimulation of auxin accumulation in

shoots (Kakani et al. 2009).

Early studies identified that the auxin-induced accumu-

lation of ACT7, a protein involved in the formation of actin

cytoskeleton, was essential for cell proliferation and callus

formation in Arabidopsis cultures (Kandasamy et al. 2001).

Actin deploymerising factor proteins (e.g. ADF9) have also

been shown to express predominantly in calli, indicating

the significance of actin cytoskeleton dynamics in deter-

mining meristematic activity (Ruzicka et al. 2007).

The differential expression and hormonal regulation of

callus dedifferentiation and redifferentiation was probed by

developing two-dimensional gel electrophoresis (2-DGE)

protein reference maps in rice (Yin et al. 2007; 2008). A

large number of cellular metabolism-related proteins such

as those involved in carbohydrate metabolism (e.g. alpha

amylase isoforms), stress/defense (e.g. mannose-binding

lectins), cytoskeleton dynamics (e.g. actin, beta-tubulin),

amino acid metabolism (e.g. S-adenosylmethionine syn-

thetase), photosynthesis (e.g. photosystem I subunit), etc.

were found to be differentially expressed in various callus

stages. These approaches facilitate rapid identification of

putative candidate genes and proteins involved in this

developmental process and also aid in understanding the

role of these proteins in mediating the in vitro responses.

Genetic changes associated with tissue culture

Plant tissue culture-mediated micropropagation is also

referred to as ‘clonal propagation’ implying that all the

progenies generated as a result of this asexual method in

vitro are ‘clones’ or ‘true to types’. However, morpho-

logical off-types or variants observed among the progeny

are found associated with permanent genetic changes or

temporary, potentially reversible epigenetic changes to the

DNA. These changes are believed to be a direct manifes-

tation of cellular stress responses and genome evolution as

proposed originally by McClintock (1984).

Genetic changes frequently associated with in vitro

regenerated plants lead to stable, lasting modifications to
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the genome that are inherited in subsequent generations.

Some of these molecular changes are associated with

phenotypic differences and hence referred to as somaclonal

variations. This in vitro-induced variation has been

exploited as a technology to develop new cultivars with

improved and desirable agronomic traits such as yield,

early maturity, and resistance to biotic and abiotic stresses

(Jain 2001 and the references therein). The in vitro selec-

tion strategy has been employed successfully for desirable

traits such as herbicide tolerance (Wrather and Freytag

1991), drought and abiotic stress tolerance (Lu et al. 2007)

and disease resistance (Sotirova et al. 1999). This tech-

nology is particularly relevant in asexually propagated

plants and self pollinated crops with a narrow genetic base.

Genetic variations observed in in vitro regenerated

plants are largely stochastic, unpredictable, and non-

reproducible, and have been classified as originating from

the source/explant (‘pre-existing’) or induced during the

culture process (‘de novo’) (Larkin and Scowcroft 1981).

For example, in the flowering plant Saintpaulia, tissue

culture regenerants show altered variegation and flower

color phenotype because of the activation and mobility of

VGs1 transposon (Sato et al. 2011a). Percentages of ‘pre-

existing’ mutated cells in the source tissue from different

plant parts and the ‘de novo’ variations generated during

culturing and regeneration process were estimated using

quantitative real-time PCR technique and compared. It was

demonstrated that heritable variations in regenerated plants

are indeed predominantly associated with ‘de novo’ tissue

culture-induced changes (Sato et al. 2011b). The extent of

genomic instability depends on a range of factors, includ-

ing genotype, explant type, in vitro system, genome size,

age of the culture, presence of an intermediate callus phase,

and nature or concentration of the exogenous growth hor-

mone used in nutrient media (Bairu et al. 2011).

Chromosomal level changes

Gross changes such as variation in ploidy level, number of

chromosomes, and structural changes represent major

alterations to the genome and they are often generated

during in vitro proliferation and differentiation. Ploidy

refers to the number of chromosomal sets in a given cell.

Polyploid organisms have several sets of chromosomes in

the genome, as opposed to that of normal diploid organisms

(Leal et al. 2006). They arise as a consequence of endore-

duplication, wherein the nuclear genome continues to rep-

licate without the normally succeeding cell division (Weber

et al. 2008). Aneuploidy denotes an extra or a missing

chromosome state (Jin et al. 2008). Structural changes are

associated with deletions, duplications, inversions or

translocations of specific chromosomal segments (Larkin

and Scowcroft 1981; Morgens et al. 1984; Fukuoka et al.

1994). In general, chromosomal structural alterations are

observed more frequently than chromosome number chan-

ges in regenerated plants (Kaeppler and Phillips 1993a).

Chromosome breakage and rearrangements reportedly

occur during the in vitro culture process (Gernand et al.

2007; Kaeppler et al. 2000 and the references therein).

Chromosome breakpoints generally occur between distal

heterochromatic knobs and the centromere in maize (Lee

and Phillips 1987), or within the centromeric heterochro-

matin in oat (Johnson et al. 1987). This led to the

hypothesis that delayed replication of heterochromatin in

tissue culture due to altered cell cycle controls might be

responsible for these aberrations (Pryor et al. 1980). The

effect of DNA methylation on chromosomal aberrations by

influencing heterochromatin formation has also been pro-

posed (Kaeppler et al. 2000).

The type, concentration and combination of synthetic

analogues of auxins [2,4-dichlorophenoxy acetic acid (2,4-

D)] and cytokinins [6-benzylaminopurine (BA)] have been

shown to affect chromosome number and ploidy levels in

select species and genotypes (Bairu et al. 2011 and the

references therein). The synthetic auxin 2,4-D, which is not

transportable out of the cells, is believed to facilitate a

meristematic state by altering the endogenous auxin gra-

dient (Morris 2000). High concentrations of 2,4-D resulted

in the generation of mixoploids and tetraploids in cucum-

ber suspension culture (Lady _zyński et al. 2002). Although

these chemicals may not be directly mutagenic, they may

affect ploidy levels by triggering unorganized cell growth,

disturbing cell cycle control leading to DNA synthesis and

endoreduplication.

DNA sequence changes

DNA sequence variations such as single base pair changes

and small ‘indels’ are predominant in progenies generated

by culturing tissues (Jiang et al. 2011). Single nucleotide

substitution mutation could arise by deamination of meth-

ylated cytosine to thiamine resulting in a transition. Fur-

thermore, the efficiency of DNA replication and repair

machinery is altered due to reduced cellular controls,

leading to a loss of sequence fidelity by generating tran-

sitions and transversion mutations (Phillips et al. 1994). In

maize, tissue culture-regenerated independent mutants of

the alcohol dehydrogenase gene have been reported with a

single base change and amino acid substitution arising

from an adenosine (A) to thymine (T) transversion (Brettell

et al. 1986; Dennis et al. 1987). The variant enzyme gen-

erated as a result of glutamic acid to valine residue sub-

stitution in exon 7 had a slower electrophoretic mobility,

whereas the second mutation resulted in a complete loss of

enzyme production due to the incorporation of a nonsense

codon in place of lysine in exon 4.
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The molecular basis of somaclonal variations in a pop-

ulation of plants regenerated from a single root explant

cultured in vitro was studied in detail in the model plant

Arabidopsis (Jiang et al. 2011). Among the 28 selfed R1

families derived from R0 regenerants, 6 exhibited heritable

phenotypic variants, such as late flowering and long hyp-

ocotyle. Whole genome sequencing analysis revealed sin-

gle base substitutions, in protein coding genes, as the most

predominant class of nucleotide changes likely to generate

somaclones. The ratio of transitions to transversions and

pattern of single base substitution were significantly dif-

ferent from spontaneous mutations found in sexually

propagated plants. A characteristic series of nucleotide

insertions, deletions and substitutions were observed that

were postulated to be related to the reduced cellular

competence for proof reading and maintenance of

sequence integrity. Surprisingly, the contribution of

transposable elements towards this variation was esti-

mated to be minor (Jiang et al. 2011). This observation

was also supported by studies in maize where the extent

of transposon polymorphisms in in vitro generated plants

was less prominent, in spite of their abundance in the

genome (Yu et al. 2011).

Gene amplification and transposition

Gene amplification refers to selective multiplication of

specific DNA sequences in the genome, leading to tandem

repeats at the same locus or those dispersed throughout the

genome. Ribosomal DNA repeats, DNA microsatellites

and transposable elements are more sensitive to stress

conditions and could be considered as hot spots for muta-

tions (Linacero et al. 2000). Long-term callus culture (up to

a year) of Welsh onion (Allium fistulosum) resulted in

genomic instability as evident from large scale transposi-

tion and amplification of ribosomal DNA and telomeric

repeat sequences (Gernand et al. 2007). An extensive

increase in copy number of mainly 5S ribosomal DNA

sequences and transposable elements in the medicinal plant

Plantago lagopus resulted in the formation of an inde-

pendent, supernumerary ‘apparent B chromosome’.

Genetic instability as visualized by recombination and

transposition could be re-induced in these B chromosomes

by means of in vitro stress (Kour et al. 2009).

Microsatellites or simple sequence repeat (SSR) are

multiple repeats of simple, short stretches of a DNA

sequence unit (1–6 bases). They can vary in size due to

their unstable nature and they can also potentially affect the

expression of adjacent genes. Investigations of the molec-

ular basis for microsatellite instability in vitro in sorghum

cultures revealed a correlation with reduced expression of

the DNA mismatch repair gene, MLH3 (Zhang et al.

2010a).

Transposable elements, as the name implies, are DNA

elements that have the ability to transpose to non-native

genomic locations. They constitute about 85% of the maize

genome (Schnable et al. 2009). Most transposable elements

are dormant during normal growth and development, but

are mobilized under specific conditions such as cell culture

(Grandbastien 1998; Hirochika 1993; Peschke et al. 1987),

irradiation (Nakazaki et al. 2003), hydrostatic pressure (Lin

et al. 2006), pathogen infection (Pouteau et al. 1994),

wounding, freezing (Mhiri et al. 1997), spaceflight envi-

ronment (Long et al. 2009) and alien DNA introgression

(Liu and Wendel 2000). Transposon insertions can affect

single genes, either by disrupting their function or influ-

encing their regulation and can also be associated with

chromosomal level deletions and rearrangements (Peschke

et al. 1987). Long-term repeated sub-culture results in the

activation of transposable elements and progressive inac-

tivation of host genes at the newly inserted site (Ozeki et al.

1997). Potato somaclonal variants with purple tuber skin

color generated from protoplast cultures of red-skinned

potato (Momose et al. 2010) and flower color variants of

the African violet plant, Saintpaulia cultivar Thamires

(Sato et al. 2011a), were associated with excision and

mobility of the transposons associated with the flavonoid

30, 50 hydroxylase (F3050H) gene and promoter sequence,

respectively, thereby affecting its functionality and pig-

ment biosynthesis.

Various classes of plant transposons and retroelements

are active in the in vitro environment as summarized in

Table 2. Retrotransposons (Class I elements) make up the

most abundant class occupying almost 75% of the maize

genome (Schnable et al. 2009). These transposable ele-

ments mobilize via an RNA intermediate. In contrast,

transposable elements that move with a DNA intermediate

belong to Class II and members of this group have been

shown to be predominantly active at the transcriptional

level in maize cell cultures (Vicient 2010).

The molecular basis of selective transcription and

transposition of cryptic transposons has been studied in

recent years. Early experiments elucidating the mechanism

of stress-induced transposon mobilization were focused on

rice (Tos17) and tobacco (Tto1, Tnt1, and Tnp2) elements.

In rice, one of the Tos17 copies in chromosome 7 trans-

poses by a ‘copy and paste’ mechanism to generate mul-

tiple copies proportional to the duration of in vitro culture

(Hirochika 2001). An array of rice mutant phenotypes

including dwarf (Sato et al. 1999), viviparous (Agrawal

et al. 2001), and virus resistance (Yoshii et al. 2009) were

characterized and the corresponding genes were identified

using Tos17 transposon tagging strategy. In tobacco,

analysis of the upstream sequence of the long terminal

repeat (LTR) region of Tnt1 and Tto1 transposon promoters

revealed regulatory motifs responsible for stress and
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hormone inducibility (Grandbastien et al. 1997; Takeda

et al. 1999), which may suggest a role for tissue culture

activation of these elements.

Plant chromovirus is a retrotransposon with a chrom-

odomain which is believed to regulate the choice of

insertion site (Fukai et al. 2010). A recent study on char-

acterizing the transposition pattern of the LORE1 (Lotus

retrotransposon 1), a chromovirus in Lotus japonicas,

revealed that these elements can be activated in the male

germ line by tissue culture de-differentiation stress. The

cis-acting elements directing expression in pollen may also

regulate male gametophyte-specific transposition in

regenerated plants (Fukai et al. 2010).

Epigenetic regulation in vitro

Epigenetic reprogramming of gene expression involves

heritable, but potentially reversible, enzyme-mediated,

chemical modifications to the DNA and associated proteins

in the chromatin. These changes often lead to the genera-

tion of epigenetic marks or signatures. Epigenetic regula-

tion in plant cell cultures orchestrated by methylation of

DNA and histones, chromatin remodeling and small RNA-

mediated regulation has been recently reviewed (Miguel

and Marum 2011). The changes are considered ‘epigenetic’

because these variations are not ‘coded’ by the DNA, but

still can be transmitted to the next generation.

DNA methylation

DNA methylation is one of the primary, heritable epige-

netic signatures that determine silencing of specific DNA

sequences. This involves the addition, via covalent bond-

ing, of a methyl group to the cytosine base in the DNA at

the CpG, CpHpG and CpHpH sites, where H denotes any

nucleotide other than guanine. DNA modification by

methylation is mediated by DNA cytosine methyltransfer-

ase enzymes belonging to chromomethylase (CMT),

domains rearranged methyltransferase (DRM), and meth-

yltransferase (MET) families. In Arabidopsis, DRM2 acts

as a de novo methylase and DRM2, MET1 and CMT3 act

as maintenance methylases, capable of identifying and

transferring methylation marks to the newly synthesized

strand during DNA replication (Cao and Jacobsen, 2002).

The magnitude of DNA sequence and methylation var-

iation present in in vitro regenerated plants has been ana-

lyzed in diverse crops such as barley (Bednarek et al. 2007;

Li et al. 2007), cocoa (López et al. 2010), grapevine

(Schellenbaum et al. 2008b), hop (Peredo et al. 2006), pea

(Smýkal et al. 2007), Doritaenopsis (Park et al. 2009),

plantago (Kour et al. 2009), Arabidopsis (Yu et al. 2010),

maize (Yu et al. 2011) and medicinal plants such as

Codonopsis (Guo et al. 2007). The frequency of these

variations increased with culture age, although some

studies also show a subsequent decline in very advanced

culture regenerants, possibly due to the loss of totipotency

and regeneration potential of extremely mutated cells as

observed in cocoa cultures (López et al. 2010). In general,

polymorphisms in these variants revealed through meth-

ylation assays are higher than that revealed through DNA

sequence analyses (such as RAPD or RFLP), pointing to a

higher level of epigenetic deregulation in the in vitro

environment. In a recent study, the ability to maintain

genomic homeostasis in vitro was compared between sor-

ghum inbred lines and their hybrids (Zhang et al. 2009).

The coordinated induction of DNA methyltransferases and

glycosylases in the hybrid calli and regenerated plants was

attributed to their greater ability to rebuff the mutational

impact. However, parallel studies in maize hybrids

revealed only minor superiority over inbreds in terms of

genetic and epigenetic vulnerability in culture. Therefore,

genotypic effect seems to play a major role in regulating

the magnitude of such variations (Yu et al. 2011).

The effect of type and concentration of growth regulator

present in the media, especially auxins, on genome-wide

methylation levels has been studied in carrot embryogenic

cultures (LoSchiavo et al. 1989). Increased 2,4-D concen-

tration was found to promote cytosine methylation levels.

Although similar observations were reported in pumpkin

cultures, the correlation was not unique to auxins. Media

components such as nitrogen source also affected methyl-

ation levels (Leljak-Levanić et al. 2004). Certain antibiot-

ics such as cefotaxime, kanamycin and hygromycin also

contributed to enhanced, irreversible methylation of

repetitive sequences. In particular, the CpG sites were

preferentially methylated (Schmitt et al. 1997).

Hormone habituation is a phenomenon by which plant

cells and tissues lose the requirement of exogenous hor-

mones to sustain cell division and development. This

autonomous growth in tissues can be established by con-

tinuous in vitro culturing (Meins 1989), inclusion of anti-

auxin chemical compounds in media (Christou 1988) or

treatment of tissue cultures with 5-azacytidine, a chemical

known to induce global hypomethylation (Durante et al.

1989). Genome-wide expression profiling of Arabidopsis

cytokinin-habituated cultures revealed that enhanced

expression of several putative DNA and chromatin modi-

fiers may affect this phenomenon, along with cytokinin

signaling components (Pischke et al. 2006).

Tissue culture-induced epigenetic somaclonal variation

of an endogenous gene was demonstrated in maize by

identifying novel epialleles of a myb transcription factor,

pericarp color 1, which affects the flavonoid biosynthesis

pathway in maize seeds (Rhee et al. 2010). The progenitor

allele, P1-wr, consists of tandem copies of the gene and

produces brick-red color in the cob glume. The tissue
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culture-induced epiallelic variants with reduced (pink

pigmentation) and even complete absence (colorless cob

glumes) of pigmentation were associated with intron hy-

permethylation and almost complete loss of transcripts.

Such variants generated due to epigenetic aberrations can

be ‘reproducible’ under identical conditions (Smulders and

de Klerk 2011).

Epigenetic mechanisms also play a role in orchestrating

developmental events and response features in vitro. Pro-

moter methylation of specific single-copy genes and con-

sequent gene repression has been reported to contribute to

the regulation of the undifferentiated state in Arabidopsis

callus and suspension cultures (Berdasco et al. 2008).

Transient expression of leafy cotyledon gene, LEC1, is

important for somatic embryogenesis. The promoter of

LEC1 gene was found to undergo hypomethylation prior to

somatic embryo formation, whereas these methylation

levels increased during subsequent developmental events

leading to vegetative growth. This indicates that LEC1

promoter methylation effectively modulates LEC1 gene

expression changes in relation to embryogenesis in vitro

(Shibukawa et al. 2009).

Recent studies involving characterization of Arabidopsis

epigenetic mutants have revealed that the expression of

WUS gene and auxin signaling components, which are

crucial for de novo adventitious shoot initiation and

regeneration, are regulated by DNA methylation and his-

tone modification of regulatory sequences (Li et al. 2011).

MET1 mutants had reduced methylation levels, and con-

sequently higher WUS gene expression, resulting in an

earlier shoot primordial initiation as compared to wild type

calli.

The pattern of methylation changes was examined in

embryo-derived in vitro regenerated maize plants (Kaep-

pler and Phillips 1993b). It was speculated that a high

tendency of decreased methylation in the regenerated

plants provided an ideal environment for the activation of

transposable elements. The role of DNA methylation in

silencing the activity of endogenous transposable elements

was first experimentally demonstrated in Arabidopsis

(Miura et al. 2001), followed by rice where in vitro acti-

vation of elements such as Tos17 and mPing was associ-

ated with hypomethylation of cytosine (Liu et al. 2004;

Cheng et al. 2006; Ngezahayo et al. 2009). Furthermore,

heritable methylation changes at the flanking sites also

point to transposon-directed epigenetic regulation of host

gene expression.

The precise, genome level epigenetic changes in tran-

scriptional activation of transposable elements in Arabidopsis

were investigated using chromosome immunoprecipitation

(ChIP) analysis on tilling arrays (Tanurdzic et al. 2008).

An apparent ‘misregulation’ of epigenetic changes was

observed with an increase in methylation of genic,

euchromatic regions and extensive hypomethylation of

heterochromatin followed by reactivation of transposable

elements. In general, transcriptional expression of trans-

posable elements was highest in cell suspension cultures as

compared to callus or seedling tissues, thereby suggesting a

high level of genomic instability in immortalized suspen-

sion cultures (Tanurdzic et al. 2008).

Recent studies indicate a role of 5-methyl cytosine

DNA glycosylase in transposon expression and transpo-

sition. In rice, this enzyme is believed to have a role in

demethylation of Tos17 thereby affecting its expression

and transposition. Knock-out mutants of rice DNA gly-

cosylase DNG701 had lower Tos17 expression and

transposition due to elevated DNA methylation levels and

over-expressers exhibited hyper transposition features (La

et al. 2011).

Chromatin remodeling

Chromatin refers to the complex of DNA and proteins,

primarily histones, and is present in the nucleus of a

eukaryotic cell. This combination enables DNA to be

packaged inside the cell and it also aids in DNA replication

and gene expression. The basic repeating unit of chromatin

is the nucleosome, a 146-base pair unit of DNA wrapped

around a histone octamer core, which consists of two

copies each of histone proteins H2A, H2B, H3 and H4.

Further compaction of the nucleosome to form a 30 nm

fiber is facilitated by the histone protein H1. Transcrip-

tionally active chromatin is called euchromatin and the

more condensed, transcriptionally inactive form is termed

heterochromatin. Efficient modification of chromatin

structure is crucial in accomplishing epigenetic regulation

of genes (Jarillo et al. 2009).

Post-translational modification of histone proteins,

especially the N terminal tails that involve activities such

as methylation of lysine and arginine, acetylation or

ubiquitination of lysine, or phosphorylation of serine resi-

dues, is an essential regulatory mechanism affecting

chromatin conformation. Enzymes such as DNA or histone

methyltransferases, histone acetyl transferases (HATs),

histone deacetylases (HDACs), and ATP-dependent chro-

matin remodeling enzymes, are essential for bringing about

these specific changes. The non-histone proteins present in

chromatin, such as the high mobility group (HMG) proteins

can also be subject to enzymatic modification to facilitate

chromatin modulation.

Dynamic histone modification, predominantly deacety-

lation of histone H3 and H4, reportedly occurs during

mitosis in cultured tobacco cells as revealed by immu-

nolabeling studies (Li et al. 2005). Chemicals such as tri-

chostatin A have been found to inhibit histone deacetylases

and its application led to cell cycle arrest, demonstrating
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that these changes are vital for mitosis progression. Chro-

matin remodeling is believed to play a key role in cellular

dedifferentiation and proliferation (Grafi et al. 2007),

including embryonic development and organogenesis

(Ogas et al. 1999; Dean Rider et al. 2003) and hormone

response (Anzola et al. 2010; Furuta et al. 2011), as out-

lined in Table 3. The Arabidopsis kyp-2 mutant is defective

in callus formation (Grafi et al. 2007). The kryptonite

(KYP)/SUVH4 gene codes for the enzyme histone H3

lysine 9 (H3K9) methyltransferase involved in the activa-

tion of cell cycle related genes, thereby initiating the

meristematic state and cell division.

Chromatin remodeling proteins belonging to the SWI/

SNF2 family like Pickle utilize the energy derived from

ATP hydrolysis to alter chromatin structure. Some tran-

scription factors such as the Viviparous 1/ABA insensitive-

3 like (VAL) B3 domain proteins are also known to have

additional domains such as plant homeodomain (PHD) zinc

finger-like and CW zinc finger domains with conserved

cysteine (C) and tryptophan (W), that can function in

chromatin regulation. Due to the de-repression of leafy

cotyledon genes occurring in the absence of the Pickle

protein, Arabidopsis pickle mutant exhibits embryonic

traits in seedlings (Ogas et al. 1997). Similarly, val1 val2

double mutants exhibit ectopic embryo formation in roots

and shoots. The pickle and val1 mutant phenotypes are

modulated by the application of gibberellin biosynthetic

inhibitors, pointing to the role of chromatin structure in

controlling gibberellin-mediated responses crucial for

repression of embryonic traits in seedlings. An independent

mutation in Pickle, cytokinin-hypersensitive 2 (ckh2),

conferred the ability to produce green callus at sub-optimal

levels of cytokinins (Furuta et al. 2011). The addition of

trichostatin A partly mimicked exogenous kinetin, thereby

indicating that chromatin regulation by deacetylation is

crucial for cytokinin-regulated callus regeneration.

Chemicals that can potentially modify the epigenetic

state of plant cells have been utilized recently in conifer

cultures to improve embryogenic efficiency (Uddenberg

et al. 2011). Trichostatin treatment inhibited germination

progression of embryos such that they could efficiently

initiate proliferative embryogenic calli in a suitable med-

ium. Maturation of somatic embryos was also blocked by

this treatment and this was mediated by affecting the

expression of embryogenesis-related leafy cotyledon

genes, possibly via chromatin modification (Uddenberg

et al. 2011).

Transposable element activation and mobility is also

regulated at the chromatin level. Chromatin associated with

transposable elements bears histone H3 lysine 9 methylated

(H3K9 methylation) states, mediated by histone H3K9

methyltransferases, which is an epigenetic mark for tran-

scriptional inactivation (Slotkin and Martienssen 2007). It

has been found that chromatin remodeling protein decrease

in DNA methylation 1 (DDM1) is required for silencing

transposable elements and formation of transcriptionally

inactive, condensed chromatin (Miura et al. 2001). More

recent studies demonstrate the role of histone deacetylase 6

(HDA6) in co-operation with DNA methyltransferase

(MET1) in mediating silencing of transposable elements

(Liu et al. 2011).

Small RNA regulation

Small, non-protein-coding, regulatory RNAs are emerging

as key players governing epigenetic processes in plants.

MicroRNAs and trans-acting small RNAs, are short, usu-

ally 21–22 nucleotides in length, and typically mediate

posttranscriptional gene silencing by mRNA degradation

owing to near-perfect complementarity and cleavage, or by

repression of translation. An independent class of small

interfering RNAs (siRNAs), 24–26 nucleotides long, usu-

ally originates from transposable elements and tandem

repeats. They are capable of transcriptional gene silencing

by targeting specific DNA and histone sequences for

methylation and heterochromatinisation via a specialized

RNA-dependent DNA methylation (RdDM) pathway.

These RNA silencing pathways are vital to the negative

regulation of several transcription factor genes, repetitive

elements, mobile elements and viruses, which are essential

for maintenance of genome stability and survival (Almeida

and Allshire 2005).

Insertion of a transposable element in the reverse ori-

entation in the genome is believed to result in the pro-

duction of an antisense transcript, followed by double-

stranded RNA formation, thereby triggering the RNA

interference (RNAi) phenomenon. The double-stranded

RNA is cleaved by dicer proteins into short, 21–30

nucleotide siRNAs, which are then loaded onto the RNA-

induced silencing complex (RISC) constituted primarily of

Argonaute proteins. These complexes are capable of tar-

geting and cleaving the complementary transcript (as

reviewed in Slotkin and Martienssen 2007). Transposon

silencing mediated by RNA-dependent DNA methylation

machinery in Arabidopsis involves proteins such as RNA

polymerase IV for transcribing transposons and other

genomic regions, RNA-dependent RNA polymerase

enzyme 2 (RDR2) to generate double-stranded RNA, dicer-

like 3 (DCL3) for the transposable element-derived siRNA

formation by cleavage, and argonaute 4 (AGO4) to gen-

erate the RNA-induced transcriptional silencing (RITS)

complex. This multimeric complex can subsequently target

genomic regions and mediate repression of transcription

(Slotkin and Martienssen 2007).

Deep sequencing of small RNAs in Arabidopsis sus-

pension cultures revealed a specific enrichment of a
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particular class of small RNA (21 nucleotides) associated

with reactivated transposable elements that had lost their

heterochromatic signature. A similar association was not

observed for the silent elements indicating that the siRNAs

of the 24 nucleotide class play a role in targeting the

silencing machinery to the transposable DNA sequences to

prevent transcriptional and transpositional activation

(Tanurdzic et al. 2008).

A large body of evidence suggests that microRNAs are

the master regulators of gene expression required for nor-

mal growth, development and stress response (Willmann

and Poethig 2007; Martin et al. 2010). MicroRNAs are

small, endogenous, single-stranded transcripts capable of

forming a stem-loop hairpin structure and can mediate

target gene silencing by RNA cleavage or translational

inhibition. They are believed to fine-tune gene expression

programs and have been found to act cooperatively with

transcription factors affecting cell differentiation, prolifer-

ation, and cell fate acquisition in human cell cultures

(Tenedini et al. 2010). The potential role of microRNAs in

contributing to somaclonal variation in vitro has been

recently postulated (Rodriguez-Enriquez et al. 2011).

Studies on Arabidopsis have identified the role of

miRNAs in regulating key transcription factors like Leafy

cotyledon 2 (LEC2) and Fusca 3 (FUS3) in early

embryogenesis (Willmann et al. 2011), Cup shaped coty-

ledon 1 and 2 (CUC1 and CUC2) in the initiation of organ

primordia (Takada et al. 2001), and transcriptional regu-

lators of auxin signaling networks (Marin et al. 2010). Such

information could be exploited to address the possible

parallel effects of miRNAs on mediating somatic

embryogenesis, formation of meristem, hormonal signal-

ing, and organogenesis in cell cultures.

Recent efforts are beginning to unravel the significance

of microRNAs in epigenetic regulation of key transcription

factors in plant cell cultures. MicroRNA profile of rice

embryogenic calli revealed the presence of potential can-

didates (e.g. miR397 and miR398), responsible for main-

taining the meristematic state, possibly by mediating gene

silencing (Luo et al. 2006). Four miRNA families (miR171,

miR159, miR169, and miR172) were differentially

expressed between embryogenic and non-embryogenic

calli in Japanese Larch (Zhang et al. 2010b). These miRNA

candidates are known to target transcription factors

involved in developmental events and these were also

inducible by abiotic stress and the phytohormone abscisic

acid (ABA). In yet another study, miRNA expression was

analyzed in conjunction with target transcription factors in

sweet orange tissues in different developmental phases of

somatic embryo development. The microRNA candidates,

miR156, 168 and 171 were associated with competence to

form somatic embryos in the embryogenic callus. It was

also suggested that the mRNA targets of miR164, 166 and

397 were involved in maintaining the meristematic prop-

erty of the non-embryogenic callus (Wu et al. 2011). All

these studies provide exciting new indications as to the role

of microRNAs in developmental control in vitro, but their

functional characterization is imperative.

Oil palm, which is an important source of vegetable oil,

is not amenable to vegetative propagation and in vitro

clonal propagation results in a high frequency of the

abnormal flower phenotype termed ‘mantled’ which accu-

mulates less oil in the fruit as compared to the wild type.

The phenotype manifests only when the oil palm starts

flowering and it is a serious economic handicap affecting

oil yield. Efforts have been underway over the past two

decades to develop early detection strategies and to char-

acterize the genetic and epigenetic processes underlying

this somaclonal variation. The current hypothesis is that the

molecular basis of this abnormality might, in part, involve

epigenetic regulation of MADS box floral identity genes at

the level of chromatin condensation and small non-coding

RNA-mediated effects (Jaligot et al. 2011).

Candidate genes for potential applications in improving

tissue culture response

Molecular regulation of the signaling pathways and

developmental switches that govern the in vitro response of

an explant remains largely unknown. However, functional

affirmation of candidate genes and proteins involved in

some of these processes has been elucidated based on the

tissue culture phenotype of the transgenic plants. The

transgenic upregulation of SERK1 kinase activity resulted

in enhanced induction of somatic embryos in Arabidopsis

(Hecht et al. 2001) and frequency of shoot regeneration in

rice (Hu et al. 2005). This demonstrates that expression of

this gene has important promoting roles in developmental

transitions and thereby has the potential to desirably

modify in vitro response features in monocots and dicots.

Transcription factors of the AP2/ERF family are repor-

ted to play key roles in mediating developmental transi-

tions in vitro. Proteins like BOLITA (Marsch-Martinez

et al. 2006) and wound-induced dedifferentiation 1

(WIND1) (Iwase et al. 2011) have been reported to stim-

ulate cell dedifferentiation and proliferation essential for

callus formation. WIND1 was initially identified based on

its preferential expression in Arabidopsis cell culture lines

compared to seedlings and was found to be efficiently

produced in response to wounding. The engineered over-

expression of this gene was sufficient to initiate and

maintain meristematic properties in differentiated tissues in

a hormone-independent manner. Inducible expression of

Babyboom1, another AP2 domain transcription factor, was

found to enhance transformation and regeneration in

610 Plant Cell Rep (2012) 31:597–620

123

Author's personal copy



recalcitrant species (Heidmann et al. 2011). Constitutive

expression of bbm1 causes undesirable pleiotropic effects

such as sterility. Hence, regulated expression strategies

were employed to efficiently utilize this gene to improve

somatic embryo competence and regeneration in sweet

pepper, poplar and maize (Heidmann et al. 2011; Deng

et al. 2009; Lowe et al. 2011).

Homeodomain-containing proteins are key players in

developmental transitions. The gene, Plant Growth Acti-

vator 6 (PGA6), was identified in a genetic screen intended

for identifying gain-of-function mutants associated with

vegetative to embryonic transitions. This activation-tagged

line was able to generate somatic embryos from various

vegetative tissues in a hormone-independent manner (Zuo

et al. 2002). These somatic embryos could subsequently be

germinated into mature plants. The mutated gene was

identified as Wuschel, which encodes a homeobox protein.

The homeobox protein knotted1 has demonstrated roles in

shoot organogenesis in Arabidopsis (Chuck et al. 1996) and

tobacco (Sinha et al. 1993). Another homeobox protein,

Shootmeristemless (STM) was also reported to promote

somatic embryo production in Arabidopsis callus and

Brassica microspore cultures (Elhiti et al. 2010). Specific

fluctuations in nucleotide metabolism, in terms of

improved expression and enzyme activity involved in

nucleotide salvage pathways that are important for somatic

embryo development, were found associated with STM

over-expression (Elhiti et al. 2011).

Agamous-like 15 (AGL15) is the sole member of the

MADS box family that abundantly expresses in both sexual

and asexual embryonic tissues (Harding et al. 2003).

Ectopic over-expression of AGL15 promoted somatic

embryo development in Arabidopsis and also helped in the

maintenance of embryo cultures for extended periods. This

transcription factor is believed to function in association

with SERK1 kinase and embryo-related leafy cotyledon

genes (Karlova et al. 2006; Zheng et al. 2009). The engi-

neered soybean orthologue was able to improve somatic

embryo formation in soybean cultures (Thakare et al.

2008).

Hemoglobins are iron-containing, oxygen-binding pro-

teins. In plants, they are involved in binding and trans-

porting oxygen in symbiotic plants and in scavenging nitric

oxide in non-symbiotic species. Recent studies have doc-

umented the effect of plant hemoglobins of class I and II

types, in affecting cell fate and shoot organogenesis in root

explants of Arabidopsis (Wang et al. 2011). The altered

hemoglobin levels are believed to affect genes involved in

cytokinin sensing and signaling, resulting in enhanced

shoot formation.

A list of candidate genes, predominantly transcription

factors, with potential applications for modulating in vitro

response features is presented in Table 4. The functions of

many of these genes have been demonstrated in the model

plant Arabidopsis thaliana. Some of the genes, like HsfA2

and SERK1, have also been reported to have additional

beneficial effects in adaptation to adverse environmental

conditions in certain species. The constitutive expression of

a vast majority of these genes is associated with undesir-

able pleiotropic effects on normal plant growth and

development. Inducible or regulated strategies that confine

expression to an appropriate stage of cell culture have

immense potential in improving in vitro response features

in diverse species. As discussed in ‘‘Small RNA regula-

tion’’, small non-coding RNA is emerging as a category of

potential regulators in many cellular pathways. Its

involvement in development and hormone response is one

area that needs to be explored and potentially exploited.

Conclusions

Use of in vitro cell and tissue-based systems offer a tre-

mendous tool for dissecting the physiological, biochemical

and molecular regulation of plant development and stress

response phenomena. Furthermore, they are extensively

utilized for clonal propagation, as a gateway for genetic

engineering of a vast majority of crops and as an eco-

nomical and large scale production platform for native or

engineered molecules. Although plants regenerated from

these systems are expected to be homogenous, we now

know that due to intrinsic and extrinsic factors affecting

development under artificial conditions, there is a high

probability of epigenomic and genomic changes, predom-

inantly methylation changes, single base pair changes and

small indels, which may or may not be associated with

phenotypic changes should be carefully considered in all

practical applications of these technologies.

The availability of complete genome sequences and the

advent of state-of-the-art sequence detection techniques

and imaging technology have provided researchers with

excellent tools and resources to address fundamental bio-

logical questions related to differentiation and morpho-

genesis. It is now known that the type, amount and timing

of exogenous growth regulators added in the media play a

major role in determining endogenous hormonal gradients

and subsequent gene expression, and development. The

available knowledge base on gene expression regulation

associated with developmental transitions could be effi-

ciently deployed in recalcitrant genotypes and crop species

to improve regeneration and morphogenesis, thereby

enhancing transformation competence.

Although there is significant progress in understanding

the genetic basis of plant in vitro culture and response,

recent discoveries regarding epigenetic mechanisms and

small RNA-mediated silencing mechanisms have shed new
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Table 4 Candidate genes for enhanced tissue culture response

No. Gene name Properties Species Phenotype Reference(s)

1 Agamous-like 15
(AGL15)

MADS box transcription factor Arabidopsis
thaliana

Constitutive over-expression stimulated

secondary somatic embryo formation in

cultured zygotic embryos and also in shoot

meristem

Harding et al.

(2003)

Glycine max Constitutive over-expression elevated

somatic embryo development

Thakare et al.

(2008)

2 Baby Boom
(BBM1)

AP2 domain transcription factor;

AP2 sub-family

Brassica
napus

Ectopic expression in Arabidopsis and

Brassica resulted in the formation of

embryo-like structures on seedlings

Boutilier et al.

(2002)

Ectopic expression in tobacco resulted in

sterility; inducible expression resulted in

spontaneous organogenesis

Srinivasan

et al. (2007)

Inducible expression in recalcitrant species

Capsicum annum resulted in enhanced

efficiency of regeneration and

transformation

Heidmann

et al. (2011)

Brassica
campestris

Constitutive over-expression regulated by

heat inducible FRT/FLP system in Chinese

white poplar resulted in somatic embryo

formation and plant regeneration

Deng et al.

(2009)

Glycine max Heterologous expression in Arabidopsis
resulted in formation of embryo-like

structures on vegetative organs

Ouakfaoui

et al. (2010)

Zea mays Inducible over-expression in maize

promotes callus and embryo formation

from recalcitrant tissues like leaves, stem

etc.

Lowe et al.

(2011)

3 Bolita AP-2/ERF like transcription factor Arabidopsis
thaliana

Constitutive over-expressers show

development of callus with shoot identity

at the root tip

Marsch-

Martinez

et al. (2006)

4 Cup-Shaped
Cotyledon1
(CUC1)

NAC family transcription factor Arabidopsis
thaliana

Ectopic over-expression triggered

adventitious shoot formation on the

adaxial surface of the cotyledons

Takada et al.

(2001)

5 Cyclin-dependent
kinase (CDK)

Cell cycle regulators Nicotiana
tabacum

Inducible expression stimulated callus

formation in auxin-rich medium in the

absence of cytokinin

Yamaguchi

et al. (2003)

6 Elaeis guineensis
AP2-1 (EgAP2-1)

AP2 domain transcription factor;

AP2 subfamily; BABYBOOM

(BBM) and AINTEGUMENTA-

like (AIL) protein

Elaeis
guineensis

Constitutive ever-expression in Arabidopsis

had a positive effect on regeneration

competence

Morcillo et al.

(2007)

7 Embryomaker
(EMK)

AP2 domain transcription factor;

AP2 sub-family

Arabidopsis
thaliana

Constitutive over-expression led to the

formation of embryo-like structures from

cotyledons and elevated somatic embryo

production in vitro

Tsuwamoto

et al. (2010)

8 Enhancer of shoot
regeneration 1
(ESR1)

AP2 domain transcription factor,

ERF sub family

Arabidopsis
thaliana

Constitutive over-expression affected shoot

organogenesis; inducible over-expression

facilitated shoot regeneration independent

of cytokinins and enhanced shoot

regeneration efficiency was obtained with

cytokinin

Banno et al.

(2001)

9 Enhancer of shoot
regeneration 2
(ESR2)

AP2 domain transcription factor,

ERF sub family

Arabidopsis
thaliana

Constitutive over-expression affected shoot

organogenesis; Inducible over-expression

facilitated shoot regeneration independent

of cytokinins and enhanced shoot

regeneration efficiency was obtained with

cytokinin, more efficient regeneration than

ESR1

Ikeda et al.

(2006)
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light on the intricacies of this important process. Promoter

methylation of specific genes and, in some cases, whole

genome methylation has been found to affect in vitro

development and response. Chemicals that can modify

chromatin remodeling and methylation can also affect

acquisition of developmental fate and hormone response.

The use of chemicals that can change the epigenetic state

of tissues is emerging as a potential tool in favorably

modulating the in vitro developmental features.

Small non-coding RNAs play a major role in transposon

silencing/activation and also can potentially modulate the

expression of candidate transcriptional regulators of

developmental phenomena. Identification of cell culture-

regulated epigenetic signatures and small RNA candidates

will undoubtedly expand our current understanding of

stress and hormone-dependent developmental mechanisms.

Novel insights from genotype, stage, tissue, and stress-

specific epigenome and transcriptome, and their possible

hormonal regulation, will give us a more comprehensive

understanding of regulatory networks and provide addi-

tional resources to improve the embryogenic capacity and

regeneration, in recalcitrant species and cultivars. Fur-

thermore, these investigations will help to devise strategies

for minimizing the effects of phenomena such as

Table 4 continued

No. Gene name Properties Species Phenotype Reference(s)

10 Gibberellin
2-oxidase 6
(GA2ox6)

Enzyme in Gibberellin metabolism Arabidopsis
thaliana

Constitutive over-expression positively

affects somatic embryo production

Wang et al.

(2004)

11 Heat shock factor
A2 (HSFA2)

Heat shock transcription factor Arabidopsis
thaliana

Constitutive over-expression caused

enhanced callus formation in root explants

in vitro and thermo-tolerance in vivo

Ogawa et al.

(2007)

12 KNAT1 Knotted-like homeobox protein Arabidopsis
thaliana

Constitutive over-expression in Arabidopsis
results in lobed leaves and formation of

ectopic shoot meristems in the sinus region

Chuck et al.

(1996)

13 Knotted 1 (KN1) Homeobox protein Zea mays Ectopic heterologous expression in tobacco

resulted in reduced plant height and leaf

size, with small shoots being produced

from the leaf surface

Sinha et al.

1993

14 Leafy Cotyledon 1
(LEC1)

Homologous to HAP3 subunit of

CBF transcription factors

Arabidopsis
thaliana

Postembryonic over-expression stimulated

formation of embryo-like structures

Lotan et al.

(1998)

15 Leafy Cotyledon 2
(LEC2)

B3 domain transcription factor Arabidopsis
thaliana

Postembryonic over-expression stimulated

formation of embryo-like structures,

auxin-free somatic embryo formation in

vitro

Stone et al.

(2001) and

Ledwoń and

Gaj (2009)

16 Plant hemoglobins

(GLB 1 and 2)

Oxygen-binding proteins Arabidopsis
thaliana

Constitutive over-expression enhances the

number of shoots formed on root explants

in culture and promote shoot

organogenesis at suboptimal levels of

cytokinin

Wang et al.

(2011)

17 Shootmeristemless
(STM)

Knotted-like homeobox protein Brassica
oleraceae

Heterologous expression in Arabidopsis-
enhanced somatic embryogenesis

Elhiti et al.

(2010)

Brassica
napus

Ectopic over-expression resulted in

profound increase in microspore-derived

embryos

18 Somatic
embryogenesis
receptor kinase 1
(SERK1)

Leucine rich repeat transmembrane

receptor-like kinase

Arabidopsis
thaliana

Ectopic over-expressers displayed enhanced

efficiency of somatic embryo induction in

vitro

Hecht et al.

(2001)

Oryza sativa Constitutive over-expression boosted the

frequency of shoot regeneration in vitro

and increased blast resistance in vivo

Hu et al.

(2005)

19 Wound-induced
dedifferentiation
1 (WIND1)

AP2/ERF family transcription

factor

Arabidopsis
thaliana

Constitutive and inducible over-expression

induced and maintained dedifferentiation

of adult cells, in a hormone-independent

manner

Iwase et al.

(2011)

20 Wuschel (WUS) Homeodomain transcription factor Arabidopsis
thaliana

Inducible over-expression strongly

promoted somatic embryo formation in a

hormone-free manner

Zuo et al.

(2002)
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somaclonal variation in economically important species

such as oil palm or better still help us tailor them to our

advantage.
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(2000) Cloning of b-1,3-glucanases expressed during Cichorium
somatic embryogenesis. Plant Mol Biol 42:377–386

Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y,

Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta

Y, Sussman MR, Kakimoto T (2004) In planta functions of the

Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA

101:8821–8826

Hirochika H (1993) Activation of tobacco retrotransposons during

tissue culture. EMBO J 12:2521–2528

Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice

functional genomics. Curr Opin Plant Biol 4:118–122

Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996)

Retrotransposons of rice involved in mutations induced by tissue

culture. Proc Natl Acad Sci USA 93:7783–7788

Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates

somatic embryogenesis of cultured cell and host defense

response against fungal infection. Planta 222:107–117

Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, Cheng Z

(2009) Identification of a high frequency transposon induced by

tissue culture, nDaiZ, a member of the hAT family in rice.

Genomics 93:274–281

Ikeda Y, Banno H, Niu Q-W, Howell SH, Chua NH (2006)

The ENHANCER OF SHOOT REGENERATION 2 gene in

Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the

Plant Cell Rep (2012) 31:597–620 615

123

Author's personal copy

http://dx.doi.org/10.1016/j.tplants.2011.08.004
http://dx.doi.org/10.1007/s00425-011-1482-0


transcriptional level and controls cotyledon development. Plant

Cell Physiol 47:1443–1456

Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T,

Tabata S, Shinozaki K, Kakimoto T (2001) Identification of

CRE1 as a cytokinin receptor from Arabidopsis. Nature

409:1060–1063

Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue

Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M (2011)

The AP2/ERF transcription factor WIND1 controls cell dedif-

ferentiation in Arabidopsis. Curr Biol 21:508–514

Jain SM (2001) Tissue culture-derived variation in crop improvement.

Euphytica 118:153–166
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